Solar Energy in Sub Saharan Africa

By Carla Ladanyi & Franka Fink i6252896 & i6254831

Sub Saharan Africa (SSA)

BP Energy Outlook, 2020; Tomala et al., 2021

Sub Saharan Africa (SSA)

Sub Saharan Africa (SSA)

Energy use per Person

(World Bank, 2021)

Situation in SSA

- Expensive to import fossil fuels
- Exposed to fossil fuel price swings
- Twice as much as people from other parts of the world

Increase in Carbon emissions Climate Change

- Despite having 15% of the world's population, Sub-Saharan Africa contributes only 5% of global greenhouse gas emissions
- 2-4% annual loss in GDP due to shortages
- Population growth = electricity demand is expected to grow by 3%

Solar Power in SSA

- High levels of solar radiation Greater than the average worldwide
- Dezentralised Photovoltaic power rural areas
 - Does not require connection to national grid
- Developing solar energy can help economic growth and job creation

Potential to contribute to the achievement of SDGs:

- SDG 7 everyone can access modern, affordable, reliable, and sustainable energy
- SDG 13 Climate Change Mitigation

Research Question

How can the challenges that inhibit the implementation of Solar Energy in Sub Saharan Africa be overcome

Assessment Methodology

Data classification

To categorise and summarise the results of the literature review

categorised challenges into 4 domains (social, political, technical and financial)

(Kittel & Kuehn , 2012)

Assessment Methodology

- → Identify causal relationships
- → used in qualitative research
- → used to propose an intervention that could solve the challenges in the long run
 - Education intervention to overcome the challenges
- → evaluates the effectiveness of solutions by tracing the process of applying solutions to identified difficulties and reviewing progress in implementation

Limitations:

- Lack of data
- Difficult to generalise the findings each country is unique

Model of Structural Challenges

STRUCTURAL CHALLENGES

- Social
- Challenges
- Education
- Utilisation

- Political Challenges
- Corruption
- Accountability

Model of Practical Challenges

STRUCTURAL CHALLENGES PRACTICAL CHALLENGES

Social Challenges Education Utilisation Technical Challenges Infrastructure

Human Resources

Political Challenges Corruption Accountability

Financial Challenges

- High Risk
- Inconsistent

Disclaimer about the model!

- Oversimplification
- Some of the relationships have not been tested for statistically significance
- Cannot be directly translated to the development of particular countries

Education as Intervention:

Goal:

To achieve self-sufficiency and an efficient installation of decentralised Solar energy system in rural areas

Type of intervention: Bottom-Up approach

Details about the Intervention

Benefits of the NGOs intervention

(Mohammed et al. 2013; Bishoge et al. 2020, Chirambo, 2018; Adenle 2020)

Benefits of the NGOs intervention

(Mohammed et al. 2013; Bishoge et al. 2020, Chirambo, 2018; Adenle 2020; World Bank, 2021)

Long-run Institutional Benefits

(Mohammed et al. 2013; Bishoge et al. 2020, Chirambo, 2018; Adenle 2020; World Bank, 2021; World Bank, 2022; United Nation, 2020)

(Mohammed et al. 2013; Bishoge et al. 2020, Chirambo, 2018; Adenle 2020; World Bank, 2021; World Bank, 2022; United Nation, 2020)

Thank You for listening!

Do You have any Questions?

We would be very happy to get some Feedback from You!

References

Adenle, A. A. (2020). Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals. Energy Policy, 137, 111180. <u>https://doi.org/10.1016/j.enpol.2019.111180</u>

Annual report 2020: time for a climate revolution. (n.d.). Global Witness. https://www.globalwitness.org/en/about-us/annual-report-2020-time-climate-revolution/

Avila, N., Carvallo, J. P., Shaw, B., & Kammen, D. M. (2017). The energy challenge in sub-Saharan Africa: A guide for advocates and policy makers. Part 1: Generating energy for sustainable and equitable development. In *www.aler-renovaveis.org*. OXF AM RESEARCH BACKGROUNDER.

Bishoge, O. K., Kombe, G. G., & Mvile, B. N. (2020). Renewable energy for sustainable development in sub-Saharan African countries: Challenges and way forward. Journal of Renewable and Sustainable Energy, 12(5), 052702. <u>https://doi.org/10.1063/5.0009297</u>

Chirambo, D. (2018). Towards the achievement of SDG 7 in sub-Saharan Africa: Creating synergies between Power Africa, Sustainable Energy for All and climate finance in-order to achieve universal energy access before 2030. *Renewable and Sustainable Energy Reviews*, *94*, 600–608. <u>https://doi.org/10.1016/j.rser.2018.06.025</u>

Forson, J. A., Baah-Ennumh, T. Y., Buracom, P., Chen, G., & Zhen, P. (2016). Causes of corruption: Evidence from sub-Saharan Africa. South African Journal of Economic and Management Sciences, 19(4), 562–578. https://doi.org/10.4102/sajems.v19i4.1530

Hossin, H., & Sulaiman, M. N. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. *International Journal of Data Mining & Amp; Knowledge Management Process*, 5(2), 01–11. <u>https://doi.org/10.5121/ijdkp.2015.5201</u>

References

IRENA – International Renewable Energy Agency. (2023, January 19). <u>https://www.irena.org</u>

Kittel, B. (2012, March 30). Introduction: Reassessing the Methodology of Process Tracing. SpringerLink. https://link.springer.com/article/10.1057/eps.2012.4?error=cookies_not_supported&code=192e329c-dc29-4b13-9fe3-d9b1e6971fcf

Mohammed, Y., Mustafa, M., & Bashir, N. (2013). Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa. *Renewable and Sustainable Energy Reviews*, 27, 453–463. <u>https://doi.org/10.1016/j.rser.2013.06.044</u>

Moner-Girona, M., Bender, A., Becker, W., Bódis, K., Szabó, S., Kararach, A., & Anadon, L. (2021). A multidimensional high-resolution assessment approach to boost decentralised energy investments in Sub-Saharan Africa. *Renewable and Sustainable Energy Reviews*, 148, 111282. <u>https://doi.org/10.1016/j.rser.2021.111282</u>

Schwerhoff, G., & Sy , M. (2020). Where the Sun shines - International Monetary Fund. International Monetary Fund. <u>https://www.imf.org/external/pubs/ft/fandd/2020/03/pdf/powering-Africa-with-solar-energy-sy.pdf</u>

UN. (2015, September). The 17 goals | sustainable development. United Nations. Retrieved January 24, 2023, from https://sdgs.un.org/goals

Work Bank (2022) Literacy rate, adult total (% of people ages 15 and above) - *Sub-Saharan Africa | Data.* . https://data.worldbank.org/indicator/SE.ADT.LITR.ZS?locations=ZG

World Bank (2021) GDP per capita, PPP (current international \$) - Least developed countries: UN classification Data. https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?locations=XL

References

Work Bank (2022) Literacy rate, adult total (% of people ages 15 and above) - *Sub-Saharan Africa | Data*. . https://data.worldbank.org/indicator/SE.ADT.LITR.ZS?locations=ZG

World Bank (2021) GDP per capita, PPP (current international \$) - Least developed countries: UN classification Data. https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?locations=XL